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Measurements of Microwave Conductivity
and Dielectric Constant by the Cavity
Perturbation Method and
Their Errors

SHUH-HAN CHAO

Abstract —The theory and technique of the cavity perturbation method
for measuring the conductivity and dielectric constant of materials are
reviewed. An analytical formula for calculating the errors of the conductiv-
ity and dielectric constant caused by the measured error in the resonant
frequency and quality factor are derived. This formula can be used for both
rectangular and cylindrical cavities. The results of measurements on silicon
samples are presented to illustrate this analysis.

I. INTRODUCTION

AVITY PERTURBATION methods have been widely

used to measure the conductivity ¢ and the dielectric
constant ¢ of materials at microwave frequencies. These
measurements are performed by inserting a small, ap-
propriately shaped sample into a cavity and determining
the properties of the sample from the resultant change in
the resonant frequency and Q-factor.

The earliest treatment of the cavity perturbation theory
was given by Bethe and Schwinger [1]; they considered the
cases that the perturbation causes 1) by the insertion of a
small dielectric sample into cavity and 2) by a small
deformation of the boundary surface of the cavity. Later,
Casimar [2] extended the cavity perturbation theory to
include the determination of the magnetic property of a
small sphere.

The basic assumption of the cavity perturbation is that
‘the change in the overall geometrical configuration of the
electromagnetic fields upon introduction of the sample
must be small. Experimentally, this means that the per-
centage change in the real part of the resonant frequency
must be small [3]. Based on this assumption, a detailed
derivation of the perturbation formula for the frequency
shift upon introduction of a sample into a resonant cavity
was given by Waldron [4]. /

The first application of cavity perturbation techniques
for the measurement of ¢ and & was developed by Birbaum
and Franeau [S]. In their experimental arrangement, a
small cylindrical sample is placed in a rectangular cavity,
operating in the TE,,, mode. An additional assumption
that “the electric field in the perturbing sample is equal to
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the electric field of the empty cavity” was made in their
calculation. The results of loss tangent and dielectric con-
stant for some low-loss liquids and solids were obtained.
A practical application of the TM;, mode cylindrical
cavity was reported by Nakamura and Furnichi [6], who
performed measurements upon a cylindrical shaped BaTiO,
single crystal placed along the axis of the cavity. This
technique has also been used by Barker er al. [7] for the

- measurement of the ionic conductor B-alumina. Generally,

in this technique, the length of the sample is equal to the
height of the cavity so that both ends of the sample are in
contact with the cavity walls. However, since the resonant
condition of a TM,, cavity is not dependent upon the
length, it can be made “flat” and a short sample can be
used. Later, Parkash et al. [8] considered the case in which
the sample did not contact the cavity wall. They introduced
a set of formulas for calculating ¢ and ¢ based on the
assumption that the sample acts like a dipole with an
effective depolarizing factor Ne. Their formulas have been
found to be adequate in yielding consistent results when
applied to the sample of a length less than the height of
cavity.

In the cavity perturbation method, small holes can be
drilled in the cavity walls and the sample can then be
inserted into the sample holder. By using this technique,
the cavity need not be taken apart for placing the sample,
and errors due to the misalignment of the cavity may be
reduced. This technique was used by Labuda and Lecrew
[9] and by Buranov and Shchegoler [10].

A different type of cavity, the reentrant cavity, has also
been used by some investigators for measurements of o
and ¢ [11], [12]. This type of cavity has a strong electric
field in certain regions, which results in a greater interac-
tion between the sample and the field. Hence, the reentrant
cavity is a good selection for the measurement of low-
conductivity materials. Recently, a tunable reentrant cavity
has been presented by Kaczkowski and Milewski [13].
Since the dimensions of the cavity are adjustable, samples
with various lengths can be inserted and the resonant
condition can be obtained from the adjustments of the
cavity length. A relatively wide range of materials (¢, = 2 —
300, tand =103 to 10~ ') were measured in their work.
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A paper presented by Champlin and Krongard [14]
treated the problem of determining o and & of a small
sphere ( ~1-mm radius for X-band measurements) of arbi-
trary conductivity. In their paper, sphere semiconductor
samples placed at the location of the electric-ficld maxi-
mum (E_, ) were measured by using a rectangular cavity
operating in the TE,;; mode. This method was further
discussed by Mansingh and Parkash [15], who introduced a
simplifying approximation to allow the conductivity and
the dielectric constant to be obtained in close form,
eliminating the need for computer iteration.

For relatively high-conductivity materials where the skin
depth 8§ is smaller than the sample dimensions, the eddy
current loss measuring technique presented by Linhart er
al. [16] may be useful. In this method, the sample is placed
at the location of a magnetic-field maximum (H, )
Boundary conditions of the H-field require the induction
of currents close to the surface of the sample, thus giving
rise to an energy loss. This energy loss will appear as a
change in the Q-factor, which can be used to determine the
conductivity of the sample.

For measurements of any size sample of arbitrary ¢ and
e, an exact solution of the fields in the interior of the
perturbing sample is necessary. Brodwin and Parsons [17]
treated this problem by considering a plane wave dif-
fracted by a spherical sample with arbitrary size. An exact
solution of the electric field in the interior of the sample is
given. This solution is valid for any value of sample radius,
conductivity, and dielectric constant as long as the per-
centage change in the real part of the resonant frequency is
small. Recently, Gebhardt et al. [18] applied this exact
solution to the measurements of o and e of the ionic
conductor a — Agl (6 =1/ -cm) with relatively large sam-
ple size (diameter ranges from 1.4 to 7.0 mm). In their
experimental arrangement, an open resonator (Fabry—Perot
cavity) operating in a TEMy,, mode was used.

The errors of measurements of ¢ and ¢ by the cavity
perturbation method have been reported in only a few
articles. In Rzepecka’s paper [19], cylindrical samples were
measured by using a rectangular cavity. The electric field
in the perturbed cavity was assumed to be equal to the
electric field in the empty cavity. The errors of ¢ and e
caused by measured errors in the resonant frequency and
Q-factor were considered. In Kaczkowski and Milewski’s
" [13] paper (mentioned previously), cylindrical samples were
measured by using a tunable reentrant cavity. The errors of
6 and & caused by the errors in the measurements of
dimensions of the cavity, the resonant frequency and Q-
factor, and the dimensions of the samples were examined.

In this paper, an error analysis of the cavity perturbation
method will be performed. This analysis will cover a rela-
tively wide range of conductivity, 10™* to 1.0/92-cm.* The
analytical formula for calculating the errors of o and e
caused by the measured error in the resonant frequency
and Q-factor will be derived. This formula can be used for

'In this paper, all units for conductivity are in (Q-cm)~ 1.
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both rectangular and cylindrical cavities. We commence
with a review of the theory of the cavity perturbation
method. Next, the errors of ¢ and ¢ are calculated. Finally,
the results of measurements on silicon samples with various
dimensions are presented to illustrate this analysis.

II. MEASUREMENT THEORY

A sample of materials inserted in a resonant cavity will
cause the complex frequency to change by an amount. The
frequency shift may be written as [4]

(E,—l)eOfVE-EO* dV+(ﬂ,—1)yOfVH-HO* av

fVC(DO-EO* + By Hg) dV

1)
where §& /6 is the complex resonant frequency shift; B,
H,, D;, and E, are the cavity fields which are assumed to
have the same configuration as the unperturbed cavity
mode; E and H are the fields in the interior of the
perturbing sample. &= ¢, — jo/we, is the complex relative
permittivity and fi, is the complex relative permeability. V,
and V,_ are the volumes of the sample and the cavity,
respectively. The limitation on the validity of (2) is that
o< @.

For a small nonmagnetic sample (p,=1) placed at the
electric-field maximum, the electric field applied to the
sample can be assumed uniform, and (1) can be simplified
as

P : E(;kmax

2fVceo|E0|2dV
(2)

(Er_l)EO/V EEO*made

&8

2
2/VceO|Eo| dv

where P is the total induced electric dipole moment.

Assume that the Q-factor of the perturbed cavity is very
high; the complex frequency shift §&/& can be separated
into real and imaginary parts as

sa  8f,

1 P-EX
'T=_+8 - 0 max
& f ’(290)

(3)
2fVeo|E0|2dV

where

(%) _ (foe_fos)é (foe_fOs)
fO fOs fOe

Ly_of Lt 1
8(2Q0)_2(Q0x QOe).

Here, f;, and Q,, are the resonant frequency and Q-factor
of the unloaded cavity with the sample inserted, and f,,
and Q,, are the corresponding quantities for the unloaded
empty cavity. Once the quantities fy,, f,., Qo,, and Q,,
are known, the conductivity and the dielectric constant can
be determined by (3).

and
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In order to determine o and &, the solution of the total can be given by [14]
induced electric moment for the extended quasistatic ap-

proximation is given by [17] 1+ — = (10)
M f (u+ 2)2 + 02
_ 31"0E0maxV.\~ 2§rjl(Np)— [ijl(Np)], ( ) 1 1 3p
2 Er]l(Np)+Np]1(Np)]’ H8(2Q0)= (u+2)2+02 (11)
where j;(Np) is the spherical Bessel function of order one, and
p = (wypoto )a, a is the sample radius, and N = ({,8,)"/~
Equation (4) can be rearranged to give 3 {1 LS ( 8/, )}
. 2j,(Np) u= -2 (12)
Sr[N '(N )]/_1 Sfo 1 2
b =8 —
P=380E0masz ‘.h ? { ( )} {M ( )}
. 2j:(Np)
G —+ 2 1 1
[ Noji(Np)] 3 =8| 55~
- M\ 20, (13)
&,8(Np)-1 v= :
=3e0EomalVs| -5
e Gk I T TRV EN |
20,
where
) Both u and v can be calculated from (12) and (13) after
g(Np) = __M)_ the resonant frequency shift and Q-factor change are
[ Moy ( Np)] known. The conductivity and the dielectric constant can
(M) (%) then be determined by
Npcos(Np)—sin( Np
=-=2 . 6 % e (u—
[Npcos(Np)—(l—szz)sin(Np)] (6) g =g, J we (u— jv)/g(No). (14)
Substitution of P into (3) yields For highly conductive matenals, the Q-factor change is
- small due to the skin depth effect. Under this condition,
ol + 8( 21 ) %(l)(z) [M—l] (7) samples can be placed in the magnetic-field maximum
fo Qo C )\ V. ]| &8(No)+2 instead of the electric-field maximum to yield a larger
where Q-factor change. Assume that a spherical sample is placed
5 at the magnetic-field maximum; a magnetic moment is
f | Eol obtained as
€= Ved ve|E v -
gl Mgy | BB
For a rectangular cavity operating in the TE,;, mode, E, hotlo maxs i,g(Np)+2
is given by (No)-1
g\Np)— (
= X . RTZ = 3o Hy max S[—-————-——-— . (15)
EO—'EOmax sin A sin D 070 g(Np)+2
where 4 and D are the width and length of the cavity. The The Q-factor change due to the insertion of the sample is
parameter C, can be determined by given by
L+ VEomgsin 7; smnﬂ, ) la( 1’ )= -31m[2g(Np)] :
=v/, .’ dv=7. M \2Q0)  (Re[g(Np)]+2}"+ {Im[g(Np)])
¢ 0 max (1 6)
Letti
N where Re[g(Np)] and Im[ g(Np)] are the real and imagi-
M=3(L ¥ ' nary parts of g(Np), respectively. For highly conductive
2\ C N\ V, materials (0/wg, > ¢, and |Np| > 1), the Q-factor change
ed di tivity b
(7) can be rewritten as can be related directly to conductivity by 1
o 1 1 3 1 o \7*
oo, (1 £,2(Np)-1 28 550) - —(Z) .
£ +15(2Q0) M[z-,g(Np)+2 : ®) M\2Q0] 220 (pgeq)ia ' @0
To determine ,, let In this paper, measurements will be reported under the
- _ . condition that the sample is placed at the electric-field
8,g(Np)=u—jo. ©) maximum. A numerical iterative method is needed to ob-

The relationship between (8f,/f,), 8(1/2Q,), #, and v tain o and e by solving (14). A Fortran program which
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solves this equation uéing the Newton—Raphson method is
available from the author.

II1.

The errors in measurements of ¢ and ¢ by the cavity
perturbation method depend not only upon the accuracies
of the measurements of the resonant frequency and Q-fac-
tor but also upon the validity of the approximations made
in the determination of the electric field in the interior of
the perturbing sample. This latter point is not considered
in our analysis. In real experiments, small samples are
chosen to reduce the errors of the perturbation approxima-
tion. However, the sample size should not be too small,
otherwise the changes of the resonant frequency and the
Q-factor due to the insertion of the sample are small and
the errors of ¢ and & caused by the measured error of the
resonant frequency and Q-factor are large. It implies that
for a given material, due to the conflicting requirements of
small size for small perturbation error and large size for
small percentage errors in 8f, and 8Q,, an optimum
sample size for minimum errors can be found.

In this section, an analysis of the error of the conductiv-
ity and the dielectric constant will be performed. In this
analysis, small samples are corsidered (¢ = 0.5 to 1.5 mm)
and attention is given to the errors caused by the measured
errors in the resonant frequency and the Q-factor. It is
done by the following procedure.

Step 1. The resonant frequency shift 8f, and the Q-fac-
tor change 8(1/Q,) as functions of the conductivity, di-
electric constant, and sample radius will be calculated. The
reason for doing these calculations is to understand the
effect of the choice of o, ¢, and a to the results of §f; and
5(1/Q,).

Step 2. The analytical forms of the errors of Ao/0 and
Ae /e as functions of Af, /f, and AQ, /Q, will be derived,
where Af, and AQ, are the measured errors of the reso-
nant frequency and Q-factor. These analytical forms allow:
1) the calculation of errors of Ao/o and Ae/¢ after Af, /f,
and AQ,/Q, are known and 2) the determination of the
required values of Af, /f, and AQ,/Q, after the limits of
Ao /o and Ae/¢ are set. For example, from the theory of
the total derivative

2 (3] 0 222

ERROR ANALYSIS

o fo Qo
AE o Afo AQO
& —021(70‘)4'022(—50‘)

and we assume that a,,, 4,,, a,,, and a,, are constants. If
Afy/fy and AQ,/Q, are known then Ac/o and Ae/e can
be calculated, or if Ac/o and Ae/e are set, the require-
ments of Af, /f, and AQ,/Q, can then be determined.
First, the results of Step 1 are described. In Figs. 1 and
2, the resonant frequency shift 6f, and the Q-factor change
8(1/Q,) as functions of the sample radius for =10 and
0=10"* to 1.0 are plotted. Both 8f, and 8(1/Q,) are
calculated from (10) and (11) by assuming a rectangular
cavity operation in the TE,,; mode with Q,, = 3000, f,, =

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 6, JUNE 1985

50

40

30~

864 (MHz)
I
L

20}~ -‘

" L 021641016 N
0 A 1 1
.50 75 1.00 125 1.50
a(mm)

Fig. 1. Resonant frequency shift as a function of sample radius for
6=10"% to 1.0/Q-cm and &, =10. (TE,q; rectangular cavity, Qq, =
3000, fy. =10 GHz, and sample placed at E,,.)
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[8¢1/Q0)|
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1
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Fig. 2. Unloaded Q-factor change as a function of sample radius for
¢=10"% to 1.0/8-cm and ¢ =10. (Same conditions as those in Fig.
L)

10 GHz, and the sample is placed at the electric-field
maximum. Figs. 3 and 4 give 8f, and §(1/Q,) as functions
of the conductivity where the sample radius is assumed
constant and equal to 1 mm, and the relative dielectric
constant is chosen from 10 to 80.

For comparison, the Q-factor change of a a=1-mm
sample placed at the magnetic-field maximum is calculated
(16) as a function of conductivity and plotted together with
the result of the case where the sample is placed at the
electric-field maximum, as shown in Fig. 5. Note that, in
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Fig. 3. Resonant frequency shift as a function of conductivity for ¢, =10
to 80 and @ =1 mm. (Same conditions as those in Fig. 1.)
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Fig. 4. Unloaded Q-factor change as a function of conductivity for
g, =10 to 80 and a =1 mm. (Same conditions as those in Fig. 1.)

this figure, the conductivity range is from 10™* to 102 The
reason for extending the upper limit from 1.0 to 102 is to
show the entire trend of the (-factor change of the case
where the sample is placed at H,,.

From these results, the following conclusions are in-
ferred.

1) For a given material, both the resonant frequency 8f,
and the Q-factor change 8(1,/Q,) increase with increasing
sample radius (¢ =0.5 to 1.5 mm), as shown in Figs. 1
and 2.
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Fig. 5. Comparison of the results of unloaded Q-factor change for a
sample placed at E,_,, with the results for the same sample placed at
H ax- (TEgy rectangular cavity, Q,, = 3000, f,, =10 GHz, ¢ =10,
and ¢ =1 mm.)

2) For low-conductivity materials, 8f, is relatively inde-
pendent of the conductivity (Figs. 1 and 3). The Q-factor
change 8(1,/Q,) versus the conductivity is approximately
linear in a log/log plot (Fig. 4), for the low-conductivity
range and 8(1/Q,) <1073 for 6 <1073 and a =1 mm.

3) For medium-conductivity materials, 1072 to 101, the
increase of conductivity affects both 87, and 8(1/Q,). 8f,
of Fig. 3 is increased slightly as the conductivity increases
in this range. 8(1/Q,) exhibits a maximum value at the
position where o/we=1, as shown in Fig. 4. Further
calculations show that the position of the maximum value
is unaffected by the radius of the sample.

4) For high-conductivity materials, both 8f, and 8(1/Q,)
are relatively independent of the dielectric constant, as
shown in Figs. 3 and 4. This reveals that the dielectric
constant is difficult to measure using the cavity perturba-
tion method for a sample with high conductivity. The
Maxwell’s equation also shows that, as the conductivity
increases, the conduction current increases and can become
so large compared to the displacement current that the
displacement current is no longer physically observable,
and thus the dielectric constant cannot be measured.

5) For high-conductivity materials, o/we>1, 8(1/Q,)
decreases with increasing conductivity, as shown in Fig. 4.
Under this condition, a sample placed at the magnetic-field
maximum may produce a larger Q-factor change. Fig. 5
shows that for ¢ >2x10"1, a sample placed at the mag-
netic-field maximum causes a larger Q-factor change than
the same sample placed at the electric-field maximum.

6) Note that §(1/Q,) of the sample placed at H_,,
shown in Fig. 5 by a solid line, is calculated by (16). For
highly conductive materials, this equation can be simplified
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to (17). Further calculations show that for a ¢ =10 and s 189 g

¢ '‘max”

e, =10 sample with a=1 mm, §(1/Q,) calculated from
(17) has a 8.5-percent error with respect to the result
calculated from (16). When o increases to 107, the dif-
ference between the Q-factors calculated from (16) and
(17) is decreased to 4 percent. Thus, for highly conductive
materials, the conductivity can be determined from the
Q-factor change by using the simple closed form (17).

7) It should be pointed out that in these calculations
(Figs. 1-5), we assumed that the field applied to the
sample was uniform (but the interior field need not be
uniform due to the skin depth effects). However, when the
sample is made larger, the applied field may not be uni- .
form and may introduce error. To account for this, the
exact solution [17], an infinite series, should be used and \:

A

[\

10}

higher order terms should be taken into consideration.

We now return to Step 2 of this procedure. Generally,
the maximum relative error of a measurement of a function
of n variables expressed as R(x;, x,,"--,x,) is given by
(20]

AR _
R _

ﬁ(a_R._Aﬁ)

X (0R Ax
R\dx;, x

Ri\dx, x,

a(mm) o(Q~cMy ?

R\dx, x

n

&( IR 'Axn)

where Ax{, Ax,,,...,Ax_are the errors in x,, x,,,..., X )
1» 22200 Bn 15272 %n> g 6 The maximum percentage error of conductivity calculated for

respectively. » the measurement of the sample by the cavity perturbation method.
In the specific case of measurements of 6 and & by the  (Assume Afy /f, =2x107°, AQ,/Qy = 6x1072, ¢,=10.)

cavity perturbation method, in order to calculate the errors

Ao/o and Ag/¢, it is necessary to know the partial deriva- and
tives do/df,, do/3Q, de/df,, and de/dQ,, as well as
assume certain errors in a selected measurement system. 14+ L ( 8fo ) 1+ L ( Jos _f()e)
These partial derivatives are obtained by using (13)—(15), M M

and the errors As/o and Ae/¢ are given by

Ao _ (AR, (80 yz_l_a( 1 ):_1_( 11 )

s ‘u 2 a1y 0, M\ 29, M\ Qo Q.

A Af, AQ

Te=‘121(709)+‘122(Q—00) (18) A=Re[g(]1\,p)]
where

1
2_ .2 B=Im|——|.
A .
c /M (x2+y2) (x2+y2)
1 The maximum relative errors |Ac/0|,,, and |Ae/¢| ..

WE 1 1 . . "
a,, = (__0.) .m( o + QOe) of the cavity perturbation method are defined

{l3a(x2= ) 6Bxy Aol _ au(%) +lg (%)
(x4 32" | [(x24y?) 7 fmax Jo 12
(1) 2|[34(:x2 =) 6Bxy Ae|  _ (Afg) (A_Q_o)
fa (;’:)Ml (+»°)" [ (=24 } RN "

1\ 1 1 1 and plotted as functions of radius (@ = 0.5 to 1.5 mm) and

a, = (;) ‘2‘1\2( Oo. + QOe) conductivity (6 =10"* to 1.0) of the sample in Figs. 6 and
7. In these calculations, the measured errors (Af, /f,) =2

3B(x?— y?) } %1075 and (AQ,/Q,)=6x10"2 of the slow scan tech-

(x2+y2)

6Axy
(x*+y?)°

‘+ nique [21] are used. The other conditions (Q,, = 3000,
Jo. =10 GHz, and ¢, =10) are also assumed.
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Fig. 7. The maximum percentage error of dielectric constant. (Same as
Fig. 6. Assume Af, /fy =2X1075, AQ, /Qy = 6X1072, ¢, =10,

From Figs. 6 and 7, the following results are inferred.

1) The maximum error {Ac/g|,,,, decreases with increas-
ing conductivity in the low-conductivity region. For o <
1073 and @ =1-mm samples, the value of |Ac/0]|,,, is
larger than 100 percent; it decreases to 50 percent for
06=10"2 and to 30 percent for 6 =10"1 Note that
|A6 /0|, has a minimum value; this minimum value oc-
curs at different conductivities for different radii. After
|Ao /0|, Passes through the minimum value, it begins to
increase with increasing conductivity and becomes almost
90 percent for 6 =1.0 and ¢ =1 mm.

2) The maximum error of |Ae/¢|,,, iS constant in the
low-conductivity region and approximately equal to 12
percent for 0 <102 with a =1 mm. |Ae/¢|,,, also has a
very slight minimum value not observable in the figure.
After |Ae/¢|,,,., passes through this minimum, it begins to
increase with increasing conductivity and becomes over
100 percent for the 0 =1.0 and a =1 mm sample.

IV. EXPERIMENTAL VERIFICATION

Samples of silicon having various radii were measured.
The primary goal of these measurements was to verify the
results of the error analysis of the cavity perturbation
method. These measurements employ an iris-coupled reac-
tion-type cavity, constructed from standard WR-90 wave-
guide operating in the TE,;; mode given in Fig. 8. A
cylindrical sample holder made from Styrofoam is placed
at the geometrical center of the inside of the cavity. A
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Fig. 8. Iris-coupled TE,y; rectangular cavity with sample and sample

holder.

TABLE I
CONDUCTIVITY AND DIELECTRIC CONSTANT OF SILICON
(0y. = 0.018/Q-cm, ¢, =11.85) As MEASURED BY THE CAVITY
PERTURBATION METHOD ( f;,, = 9592.8 MHz, Q,, = 2630,

B=027)
Exp. max.

a fos Qms 8 Qs [+ €r % Uncertainty

(mm) (Miz) (Q-cm)™?
Aclo Aefe
0.81 9586.1 1850 0.22 2249 0.012 11.54 98 32
1.00 9579.9 1453 0.18 1713 0.023 11.92 56 18
1.50 9549.4 843 0.10 933 0,020 11.21 24 7

small hole drilled on the upper broadside wall of the cavity
allows the sample to be inserted into the sample holder
without disassembling the cavity and coupling iris.

The measurements of the resonant frequency and Q-fac-
tor are performed by using the slow scan technique. The
sweep rate of frequency is kept slow enough (about 0.01
MHz/s) to avoid errors in the measurements of the proper-
ties of materials due to the uncertainty principle in swept-
frequency [22]. The procedure of the determination of o
and & is described as follows. 1) The resonant frequency f,,
and the unloaded Q-factor Q,, of the empty cavity are
measured with the sample holder inserted (no sample pre-
sent). 2) The sample is inserted into the sample holder, and
the resonant frequency f;, and unloaded Q-factor Q,, are
measured. 3) The values of o and ¢ are then computed
from the measured values of f,,, Qy., fo,, and Q,, using
(12)-(14).

The results of the measurements of silicon samples are
tabulated in Table 1. For determining the errors Ao /o and
Ae /¢, the dc conductivity (o, = 0.018) and the dielectric
constant (&, =11.85) of the silicon samples were measured
by the four-probe method and the transmission waveguide
method, respectively. The theoretical values of the maxi-
mum errors |As/0|,, and |[Ae/¢ . are then calculated
from (19) by assuming that the values of ¢ and & provided
by the four-probe and the transmission waveguide methods
are the “true” values. In Fig. 9, the possible upper and
lower bounds of ¢ and ¢ as calculated from |Ao /0], and
{Ae /€] . are shown by the error bars, and the measured
values are marked by the crosses. Those assumed “true”
values of o and ¢ are also shown by a dashed line in these
figures. The results of the measurements of ¢ and ¢ show
that the theoretical results of the error analysis encompass
most of the experimental results.
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Fig. 9. Theoretical maximum error bounds and experimental results of

silicon (o dc = 0.018 /8 -cm, ¢, =11.85) of cavity perturbation method.
(a) Conductivity and (b) dielectric constant.
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V. SUMMARY AND DISCUSSION

The resonant frequency shift and Q-factor change of a
microwave cavity caused by the insertion of a sample with
different ¢ and e, and sample sizes have been calculated
and shown in the figures. These figures give us a quantity
concept of the change of cavity parameters due to the
perturbation of samples. An analytical formula for calcu-
lating the errors of o and e caused by the measured error
in the resonant frequency and Q-factor has been derived.
From this formula, the order of accuracy of the measure-
ment results of o and e by the cavity perturbation method
can be predicted. Note that in the error analysis, we
assumed that the field applied to the sample was uniform.
Hence, the theoretical errors in measured ¢ and & decrease
with an increasing sample radius. However, when the sam-
ple is made larger, the applied field may not be uniform
and may introduce error. To account for this, the exact
solution (an infinite series) should be used and higher order
terms should be taken into consideration.
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