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Measurements of Microwave Conductivity
and Dielectric Constant by the Cavity

Perturbation Method and
Their Errors

SHUH-HAN CHAO

Abstract —The theory and teehnique of the cavity perturbation method

for measuring the eondnctivity and dielectric constant of materials are

reviewed. An anafyticm fornnda for calculating the errors of the conductiv-

ity and dielectric constant caused by the measnred error in the resonant

frequency and quafity factor are derived. This formula can be used for both

rectangular and cylindrical cavities. The results of measurements on silicon

samples are presented to illustrate this analysis.

I. INTRODUCTION

c AVITY PERTURBATION methods have been widely

used to measure the conductivity u and the dielectric

constant .5 of materials at microwave frequencies. These

measurements are performed by inserting a small, ap-

propriately shaped sample into a cavity aqd determining

the properties of the sample from the resultant change in

the resonant frequency and Q-factor.

The earliest treatment of the cavity perturbation theory

was given by Bethe and Schwinger [1]; they considered the

cases that the perturbation causes 1) by the insertion of a

small dielectric sample into cavity and 2) by a small

deformation of the boundary surface of the cavity. Later,

Casimar [2] extended the cavity perturbation theory to

include the determination of the magnetic property of a

small sphere.

The basic assumption of the cavity perturbation is that

‘the change in the overall geometrical configuration of the

electromagnetic fields upon introduction of the sample

must be small. Experimentally, this means that the per-

centage change in the real part of the resonant frequency

must be small [3]. Based on this assumption, a detailed

derivation of the perturbation formula for the frequency

shift upon introduction of a sample into a resonant cavity

was given by Waldron [4].

The first application of cavity perturbation techniques

for the measurement of u and e was developed by Birbaum

and Franeau [5]. In their experimental arrangement, a

small cylindrical sample is placed in a rectangular cavity,

operating in the TE106 mode. An additional assumption
that “the electric field in the perturbing sample is equal to
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the electric

calculation.

field of the empty cavity” was made in their

The results of loss tangent and dielectric con-

stant for soqle low-loss liquids and solids were obtained.

A practical application of the TMOIO mode cylindrical

cavity was reported by Nakamura and Furnichi [6], who

performed measurements upon a cylindrical shaped BaTiO~

single crystal placed along the axis of the cavity. This

technique has also been used by Barker et al. [7] for the

measurement of the ionic conductor /l-alumina. Generally,

in this technique, the length of the sample is equal to the

height of the cavity so that both ends of the sample are in

contact with the cavity walls. However, since the resonant

condition of a TMOIO cavity is not dependent upon the

length, it can be made “flat” and a short sample can be

used. Later, IParkash et al. [8] considered the case in which

the sample did not contact the cavity wall. They introduced

a set of formulas for calculating u and e based on the

assumption that the sample acts like a dipole with an

effective depolarizing factor Ne. Their formulas have been

found to be adequate in yielding consistent results when

applied to the sample of a length less than the height of

cavity.

In the cavity perturbation method, small holes can be

drilled in the cavity walls and the sample can then be

inserted into the sample holder. By using this technique,

the cavity need not be taken apart for placing the sample,

and errors due to the misalignment of the cavity may be

reduced. This technique was used by Labuda and Lecrew

[9] and by Buranov and Shchegoler [10].

A different type of cavity, the reentrant cavity, has also

been used by some investigators for measurements of u

and & [11], [12]. This type of cavity has a strong electric

field in certain regions, which results in a greater interac-

tion between the sample and the field. Hence, the reentrant

cavity is a good selection for the measurement of low-

conductivity materials. Recently, a tunable reentrant cavity

has been presented by Kaczkowski and Milewski [1 3].

Since the dimensions of the cavity are adjustable, samples

with various lengths can be inserted and the resonant

condition can be obtained from the adjustments of the

cavity length, A relatively wide range of materials (e, = 2,–

300, tan tl = 10-5 to 10-1) were measured in their work,,
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A paper presented by Champlin and Krongard [14]

treated the problem of determining u and e of a small

sphere ( - l-mm radius for X-band measurements) of arbi-

trary conductivity. In their paper, sphere semiconductor

samples placed at the location of the electric-field maxi-

mum ( ~~a ) were measured by using a rectangular cavity

operating in the TE103 mode. This method was further

discussed by Mansingh and Parkash [15], who introduced a

simplifying approximation to allow the conductivity and

the dielectric constant to be obtained in close form,

eliminating the need for computer iteration.

For relatively high-conductivity materials where the skin

depth 8 is smaller than the sample dimensions, the eddy

current loss measuring technique presented by Linhart et

al. [16] may be useful. In this method, the sample is placed

at the location of a magnetic-field maximum ( H~= ).

Boundary conditions of the H-field require the induction

of currents close to the surface of the sample, thus giving

rise to an energy loss. This energy loss will appear as a

change in the Q-factor, which can be used to determine the

conductivity of the sample.

For measurements of any size sample of arbitrary o and

e, an exact solution of the fields in the interior of the

perturbing sample is necessary. Brodwin and Parsons [17]

treated this problem by considering a plane wave dif-

fracted by a spherical sample with arbitrary size. An exact

solution of the electric field in the interior of the sample is

given. This solution is valid for any value of sample radius,

conductivity, and dielectric constant as long as the per-

centage change in the real part of the resonant frequency is

small. Recently, Gebhardt et al. [18] applied this exact

solution to the measurements of u and e of the ionic

conductor a – AgI (u =1/Q -cm) with relatively large sam-

ple size (diameter ranges from 1.4 to 7.0 mm). In their

experimental arrangement, an open resonator (Fabry–Perot

cavity) operating in a TEMw~ mode was used.

The errors of measurements of u and c by the cavity

perturbation method have been reported in only a few

articles. In Rzepecka’s paper [19], cylindrical samples were

measured by using a rectangular cavity. The electric field

in the perturbed cavity was assumed to be equal to the

electric field in the empty cavity. The errors of u and e

caused by measured errors in the resonant frequency and

Q-factor were considered. In Kaczkowski and Milewski’s

[13] paper (mentioned previously), cylindrical samples were

measured by using a tunable reentrant cavity. The errors of

o and e caused by the errors in the measurements of

dimensions of the cavity, the resonant frequency and Q-

factor, and the dimensions of the samples were examined.

In this paper, an error analysis of the cavity perturbation

method will be performed. This analysis will cover a rela-

tively wide range of conductivity, 10-4 to 1.O/i2. cm.1 The

analytical formula for calculating the errors of u and &

caused by the measured error in the resonant frequency

and Q-factor will be derived. This formula can be used for

1 In this paper, all units for conductivity are in (Q. cm) – 1

both rectangular and cylindrical cavities. We commence

with a review of the theory of the cavity perturbation

method. Next, the errors of u and e are calculated. Finally,

the results of measurements on silicon samples with various

dimensions are presented to illustrate this analysis.

II. MEASUREMENT THEORY

A sample of materials inserted in a resonant cavity will

cause the complex frequency to change by an amount. The

frequency shift may be written as [4]

86
(E, -l)e,j ~.~$dv+(~,-l)p,jv,~.~{d~

Vs— —
5

/( DOOE; + BO.H$) dV
Vc

(1)

where 86/6 is the complex resonant frequency shift; BO,

HO, DO, and EO are the cavity fields which are assumed to

have the same configuration as the unperturbed cavity

mode; E and H are the fields in the interior of the

perturbing sample. S, =s, – @/usO is the complex relative

permittivit y and ji, is the complex relative permeability. V,

and V, are the volumes of the sample and the cavity,

respectively. The limitation on the validity of (2) is that

8G <<6.

For a small nonmagnetic sample (pr = 1) placed at the

electric-field maximum, the electric field applied to the

sample can be assumed uniform, and (1) can be simplified

as

86
(Er-l)Eo

/ E. E;.= dV
v, P. E:.=—.—— — —

u
2~ eOlE012dV 2~ eOlE012dV

Vc Vc

(2)

where P is the total induced electric dipole moment.

Assume that the Q-factor of the perturbed cavity is very

high; the complex frequency shift ~fi/fi can be separated

into real and imaginary parts as

(s6 afo ()1 P. E;.=
. —= _

6 ~ + ja 2Qo

2/v&olEo,2dv ‘3)

where

(W=(f”eluwf”e.rs
and

‘(*l=+(*-*)
Here, fo, and Qo= are the resonant frequency and Q-factor
of the unloaded cavity with the sample inserted, and fo,

and Qo, are the corresponding quantities for the unloaded

empty cavity. once the quantities fo,, foe, Qo,, and Qo,
are known, the conductivity and the dielectric constant can

be determined by (3).
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In order to determine u and e, the solution of the total

induced electfic moment for the extended quasistatic ap-

proximation is given by [17]

[

3&oEoma~ 2Erj1(ivp)- [Npj,(Np)]’
P= z

~r~l(w)+~P~l(~P)]’ 1(4)

where jl( Np ) is the spherical Bessel function of order one,

p = ( @G)a, a is the sample radius, and N= (ji,~,)lzz.
Equation (4) can be.rearranged to give

11
~ 2jl(Np)

‘ [Npjl(Np)]’ ‘1
P = 3eOEO~=~

~ 2jl(Np)

r [Npjl(Np)]’ ‘2

where

2j1(Np)
g(Np) =

[Npjl(Np)])

–2

[

Npcos(Np)–sin(Np). 1Npcos(Np)–(1– N2p2)sin(Np) “

Substitution- of P into (3) yields

(5)

(6)

where

IE012cc=;L4Eomm12‘v”
c

For a rectangular cavity operating in the TEIO. mode, E.

is given by

where A and D are the width and length of the cavity. The

parameter CC can be determined by

lEom=sin; sin~12dv=~
C’=+jvc

c lEomx12 4“

Letting

(7) can be rewritten as

To determine ?,, let

Erg(Np) = u– ju. (9)

The relationship between (tifo/~o), 6(1/2Qo), u, and u

can be given by [14]

~+ 1 &fo _ 3(zJ+2)

M f, (U+2)2+U2

()
J-62=

3V

M 2Q0 (u+2)2+vz

and

3(1:”+(%’)}
u=.

{’++(%)}2+(+
3(+%))
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(10)

(11)

(12)

(13)

{l+WY+{+’(+l))’
Both u and v can be calculated from (12) and (13) after

the resonant frequency shift and Q-factor change are

known. The conductivity and the dielectric constant can

then be determined by

“&=(u - jv)/g(Np).gr=er —j (14)

For highly conductive materials, the Q-factor change is

small due tc) the skin depth effect. Under this condition,

samples can be placed in the magnetic-field maximum

instead of the electric-field maximum to yield a larger

Q-factor chamge. Assume that a spherical sample is placed

at the magnetic-field maximum; a magnetic moment is

obtained as

M=,3/’LoHom& [%x]
=3/Jo~o ma-xv, [1g(Np)–1

g(Np)+2 “
(15)

The Q-factor change due to the insertion of the sample is

given by

()4 -J– = -31m[g(Np)]

M 2~’o {Re[g(Np)]+2}2+ {Im[g(Np)]}2

(16)

where Re[ g( Np)] and Im[ g( Np)] are the real and imagi-

nary parts of g( Np ), respectively. For highly conductive

materials ( CI/@eo >> e. and INpl >> l), the Q-factor change

can be related directly to conductivity by

In this palper, measurements will be reported under the

condition that the sample is placed at the electric-field

maximum. A numerical iterative method is needed to ob-

tain u and e by solving (14). A Fortran program which



522 IEEE TRANSACTIONSON MICROWAVETHEOR1’AND TECHNIQUES, VOL. MTT-33, NO. 6, JUNE 1985

solves this equation using the Newton–Raphson method is

available from the author.

III. ERROR ANALYSIS

The errors in measurements of u and e by the cavity

perturbation method depend not only upon the accuracies

of the measurements of the resonant frequency and Q-fac-

tor but also upon the validity of the approximations made

in the determination of the electric field in the interior of

the perturbing sample. This latter point is not considered

in our analysis. In real experiments, small samples are

chosen to reduce the errors of the perturbation approxima-

tion. However, the sample size should not be too small,

otherwise the changes of the resonant frequency and the

Q-factor due to the insertion of the sample are small and

the errors of u and e caused by the measured error of the

resonant frequency and Q-factor are large. It implies that

for a given material, due to the conflicting requirements of

small size for small perturbation error and large size for

small percentage errors in 8~0 and 8QO, an optimum

sample size for minimum errors can be found.

In this section, an analysis of the error of the conductiv-

ity and the dielectric constant will be performed. In this

analysis, small samples are cop sidered (a = 0.5 to 1.5 mm)

and attention is given to the errors caused by the measured

errors in the resonant frequency and the Q-factor. It is

done by the following procedure.

Step 1. The resonant frequency shift d~O and the Q-fac-

tor change 8(1/QO) as functions of the conductivity, di-

electric constant, and sample radius will be calculated. The

reason for doing these calculations is to understand the

effect of the choice of u, q and a to the results of 8~0 and

~(1/Qo).

Step 2. The analytical forms of the errors of Acr/u and

A&/E as functions of A~o/~O and AQO/Qo will be derived,

where AfO and AQO are the measured errors of the reso-

nant frequency and Q-factor. These analytical forms allow:

1) the calculation of errors of Au/u and Ae/e after A~O/~O

and AQO /QO are known and 2) the determination of the

required values of A~O/~o and AQO /Q. after the limits of

Au/u and As/e are set. For example, from the theory of

the total derivative

Aa
— = all
o

A~
— = a21
t

%’)+U4%’)
%)’”4%)

and we assume that all, alz, a21, and a22 are constants. If

AfO/fO and AQo/Qo are known then Au/u and A&/e can
be calculated, or if AtT/rr and AE/E are set, the require-

ments of A f. /f. and AQO /Q. can then be determined.

First, the results of Step 1 are described. In Figs. 1 and

2, the resonant frequency shift r$fo and the Q-factor change

ti(l/Qo) as functions of the sample radius for &=10 and

u =10 – 4 to 1.0 are plotted. Both ~fo and 8(1/Qo) are

calculated from (10) and (11) by assuming a rectangular

cavity operation in the TE103 mode with Qo, = 3000, foe =

Fig. 1. Resonant frequency shift as a function of sample radius for
o = 10– 4 to 1.0/Q. cm and e, =10. (TEIO~ rectanguktr cavity, Q., =

3000, fO, = 10 GHz, and sample placed at &a.)

a (mm)

Fig. 2. Unloaded Q-factor change as a function of sample radius for

o =10 – 4 to 1.0/0. cm and E, =10. (Same conditions as those in Fig.

1.)

10 GHz, and the sample is placed at the electric-field

maximum. Figs. 3 and 4 give tlfo and i3(l/Qo) as functions

of the conductivity where the sample radius is assumed

constant and equal to 1 mm, and the relative dielectric

constant is chosen from 10 to 80.

For comparison, the Q-factor change of a a = l-mm

sample placed at the magnetic-field maximum is calculated

(16) as a function of conductivity and plotted together with

the result of the case where the sample is placed at the

electric-field maximum, as shown in Fig. 5. Note that, in
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,~
10’ 163 115z 10’ 10°

0(04)-1

Fig. 3. Resonmt frequency shft~afunction ofconductitity fore, =lO
to 80 and a = 1 mm. (Same conditions as those in Fig. 1.)

@l-CM)-l

Fig. 4. Unloaded Q-factor change as a function of conductivity for
~,=10t080 and a=lmm. (Same conditions asthose in Fig. 1.)

this figure, the conductivity range is from 10-4 to 102. The

reason for extending the upper limit from 1.0 to 102 is to

show the entire trend of the Q-factor change of the case

where the sample is placed at ll~=.

From these results, the following conclusions are in-

ferred.

1) For a given material, both the resonant frequency ~.fo

and the Q-factor change 8(1/Qo) increase with increasing

sample radius (a = 0.5 to 1.5 mm), as shown in Figs. 1

and 2.

n/

//
la’ :

!

Iix~

: /
x—

/

l(f ~
/

\-

/

-i’
— Sample Placed at Hmax

-f’ -- – Sample Placed at Emax

l(j’~
10’ 103 162 16’ 10° 10’ 102

Fig. 5. Comparison of the results of unloaded Q-factor change for a
sample placed at E~a with the results for the same sample placed at
Hmax. (TEIO:I rectangular cavity, QO= = 3000, joe = 10 GHz, E,’= 10,

and a = 1 mm.)

2) For low-conductivity materials, 8$0 is relatively inde-

pendent of the conductivity (Figs. 1 and 3). The Q-factor

change 8(1/Qo) versus the conductivity is approximately

linear in a hog/log plot (Fig. 4), for the low-conductivity

range and 8(1/Qo)s 10–5 for u S10–3 and a =1 mm.

3) For medium-conductivity materials, 10-2 to 10-1, the

increase of conductivity affects both d~o and 8(1/QO). 8~0

of Fig. 3 is increased slightly as the conductivity increases

in this range. 8(1/Q. ) exhibits a maximum value at the

position where cr/a e = 1, as shown in Fig. 4. Further

calculations show that the position of the maximum value

is unaffected by the radius of the sample.

4) For”high-conductivity materials, both 8~0 and 8(1/QO)

are relative] y independent of the dielectric constant, as

shown in Figs. 3 and 4. This reveals that the dielectric

constant is difficult to measure using the cavity perturba-

tion method for a sample with high conductivity. ‘The

Maxwell’s equation also shows that, as the conductivity

increases, the conduction current increases and can become

so large compared to the displacement current that the

displacement current is no longer physically observable,

and thus the dielectric constant cannot be measured.
5) For high-conductivity materials, u/es >1, 8(1/QO)

decreases with increasing conductivity, as shown in Fig. 4.

Under this condition, a sample placed at the magnetic-field

maximum may produce a larger Q-factor change. Fig. 5

shows that jfor u >2 x 10 – 1, a sample placed at the mag-

netic-field maximum causes a larger Q-factor change than

the same sample placed at the electric-field maximum.

6) Note that 8(1/QO) of the sample placed at 11~=,

shown in Fig. 5 by a solid line, is calculated by (16). For
highly conductive materials, this equation can be simplified
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to (17). Further calculations show that for a o =10 and

e, =10 sample with a = 1 mm, ~(l/QO) calculated from

(17) has a 8.5-percent error with respect to the result

calculated from (16). When u increases to 102, the dif -

ference between the Q-factors calculated from (16) and

(17) is decreased to 4 percent. Thus, for highly conductive

materials, the conductivity can be determined from the

Q-factor change by using the simple closed form (17).

7) It should be pointed out that in these calculations

(Figs. 1-5), we assumed that the field applied to the

sample was uniform (but the interior field need not be

uniform due to the skin depth effects). However, when the

sample is made larger, the applied field may not be uni-

form and may introduce error. To account for this, the

exact solution [17], an infinite series, should be used and

higher order terms should be taken into consideration.

We now return to Step 2 of this procedure. Generally,

the maximum relative error of a measurement of a function

of n variables expressed as I?(x1, X2, “ “” , x~) is given by

[20]

~= 4%”$?) + *(%”5)

““”+WH5)
where Axl, AX2,, ..., Ax. are the errors in xl, Xz,,..., x.,

respectively.

In the specific case of measurements of u and e by the

cavity perturbation method, in order to calculate the errors

Au/u and A&/e, it is necessary to know the partial deriva-

tives 8u/8fo, i3u/8Q0, &/8fo, and 8e/8Q0, as well as

assume certain errors in a selected measurement system.

These partial derivatives are obtained by using (13)-(15),

and the errors Ao/v and A&/8 are given by

$=”,1(%)+”4%’)
+=”+?’)+”4%$

where

()[O&. 2 6Axy 3B(x2–y2)
all = ~——

M (x2+y92 + (X2+Y2)2
1

“12=(%)*(*+*)

(18)

/
\

\

\
/-&,,-,

Fig. 6. The maximum percentage error of conductivity calculated for

the measurement of the sample by the cavity perturbation method.

(Assume A~O/~o = 2X10-5, AQO/QO = 6X10-2, e, =10.)

and

‘=l++f(w=l++(’O’.irl
‘=MirJ=4&k’)

[11
A=Re —

g(Np)

[11
B=Im —

g(Np) “

The maximum relative errors ]Au/u I~= and IAe/el mm

of the cavity perturbation method are defined

“13A(x2–y2) + 6Bxy

(x2+y2)2 (X2+ y2)2 1

3A(x2 – y2)

(X2+ ~2)2
+ 6BXY

(x2+y2)2
I

and plotte~

conductivity (u =10 – 4 to 1.0) of the sample in Figs. 6 and

1
7. In these calculations, the measured errors (AfO/fo) = 2

3B(x2–y2) X 10-5 and (AQo/Qo) = 6X10-2 of the slow scan tech-

(x2+y2)2
nique [21] are used. The other conditions (Qoe = 3000,

foe =10 GHz, and e,= 10) are also assumed.

as functions of radius (a = 0.5 to 1..

(19)

mm) and
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.
P1.00

1.25
~50

‘(””’>

{

\
/

o(LCM )-’

Fig. 7. The maximum percentage error of dielectric constant. (Same as
Fig. 6. Assume A~O~fO= 2;10-5, AQO/QO = 6X10-2, E,’=1O.)

From Figs. 6 and 7, the following results are inferred.

1) The maximum error lAu/u I~m decreases with increas-

ing conductivity in the low-conductivity region. For u s

10-3 and a = l-mm samples, the value of lAo/u I~w is

larger than 100 percent; it decreases to 50 percent for
0=10–2 and to 30 percent for u =10 – 1. Note that

]Au/ulm= has a minimum value; this minimum value oc-

curs at different conductivities for different radii. After

lAu/ul ~= passes through the minimum value, it begins to
increase with increasing conductivity y and becomes almost

90 percent for u =1.0 and a = 1 mm.

2) The maximum error of lAe/el ma is constant in the

low-conductivity region and approximately equal to 12

percent for u <10-2 with a =1 mm. lAe/&l mm also has a

very slight minimum value not observable in the figure.

After IAE/El ~= passes through this minimum, it begins to
increase with increasing conductivity y and becomes over

100 percent for the u = 1.0 and a = 1 mm sample.

IV. EXPERIMENTAL VERIFICATION

Samples of silicon having various radii were measured.
The primary goal of these measurements was to verify the

results of the error analysis of the cavity perturbation

method. These measurements employ an iris-coupled reac-

tion-type cavity, constructed from standard WR-90 wave-

guide operating in the TE103 mode given in Fig. 8. A

cylindrical sample holder made from Styrofoam is placed

at the geometrical center of the inside of the cavity. A

Fig.

I
sample holder

8. Ins-coupled TE103 rectangular cavity with sample and sample
holder.

TABLE I
CONDUCTIVITYAND DIELECTRIC CONSTANT OF SILICON

(.dC = 0.018/Q. cm, E,= 11.85) AS MSASURED BY THE CAVITY

PERTURBATION METHOD (foe= 9592.8 MHz, Qoe = 2630,
~= 0.27)

E
Exp,max.

a f., Qms 6 Q.. o Er % Uncert8,ntY

(m) (Mm) (km)-’
Aolo Al.

0.81 9586.1 1850 0.22 2249 0.012 11.54 9s 32

1.00 9579.9 1453 0.18 1713 0.Q23 11.92 56 1s

1.50 9549.4 843 0.10 933 0.020 11.21 24 7

small hole drilled on the upper broadside wall of the cavity

allows the sa~mple to be inserted into the sample holcler

without disassembling the cavity and coupling iris.

The measurements of the resonant frequency and Q-fac-

tor are performed by using the slow scan technique. The

sweep rate of frequency is kept slow enough (about 0.01

MHz/s) to avoid errors in the measurements of the proper-

ties of materials due to the uncertainty principle in swept-

frequency [Z!]. The procedure of the determination of tY

and & is described as follows. 1) The resonant frequency ~0,

and the unloladed Q-factor Qoe of the empty cavity m-e

measured with the sample holder inserted (no sample pre-

sent). 2) The sample is inserted into the sample holder, and

the resonant frequency ~0, and unloaded Q-factor Qo, are

measured. 3) The values ,of o and e are then computed

from the measured values of & Qoe,fO$, ad Qo, using
(12)-(14).

The results, of the measurements of silicon samples are

tabulated in Table I. For determining the errors Au/o and

A&/e, the dc conductivity (u~C= 0.018) and the dielectric

constant (e, ==11 .85) of the silicon samples were measured

by the four-probe method and the traimnission waveguide

method, respectively. The theoretical values of the maxi-

mum errors 1Au/u 1ma and jA&/&l mm are then calculated

from (19) by assuming that the values of u and e provided

by the four-probe and the transmission waveguide methods

are the “true” values. In Fig. 9, the possible upper and
lower bounds of u and c as calculated from lAu/u 1~= and

lA&/el ~= are shown by the error bars, and the measured
values are m,arked by the crosses. Those assumed “true”

values of u and e are also shown by a dashed line in these

figures. The results of the measurements of u and e show

that the theoretical results of the error analysis encompass

most of the experimental results.
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Fig. 9. Theoretical maximum error bounds and experimental results of
silicon (u dc = 0.018/0. cm, E, =11.85) of cavity perturbation method.
(a) Conductivity and (b) dielectric constant.

V. SUMMARY AND DISCUSSION

The resonant frequency shift and Q-factor change of a

microwave cavity caused by the insertion of a sample with

different u and e, and sample sizes have been calculated

and shown in the figures. These figures give us a quantity

concept of the change of cavity parameters due to the

perturbation of samples. An analytical formula for calcu-

lating the errors of u and e caused by the measured error

in the resonant frequency and Q-factor has been derived.

From this formula, the order of accuracy of the measure-

ment results of u and e by the cavity perturbation method

can be predicted. Note that in the error analysis, we

assumed that the field applied to the sample was uniform.

Hence, the theoretical errors in measured u and e decrease

with an increasing sample radius. However, when the sam-

ple is made larger, the applied field may not be uniform

and may introduce error. To account for this, the exact

solution (an infinite series) should be used and higher order

terms should be taken into consideration.
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